Existence of bounded uniformly continuous mild solutions onRof evolution equations and their asymptotic behaviour
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولExistence of Mild Solutions for Fractional Evolution Equations
In this article, we establish sufficient conditions for the existence of mild solutions for fractional evolution differential equations by using a new fixed point theorem. The results obtained here improve and generalize many known results. An example is also given to illustrate our results.
متن کاملExistence of Mild Solutions for Nonlocal Semilinear Fractional Evolution Equations
In this paper, we investigate a class of semilinear fractional evolution equations with nonlocal initial conditions given by (1) ⎧⎨ ⎩ dqu(t) dtq = Au(t)+(Fu)(t), t ∈ I, u(0)+g(u) = u0, where 0 < q< 1 , I is a compact interval. Sufficient conditions for the existence of mild solutions for the equation (1) are derived. The main tools include Laplace transform, Arzela-Ascoli’s Theorem, Schauder’s ...
متن کاملExistence, Uniqueness and Asymptotic behaviour for fractional porous medium equations on bounded domains
We consider nonlinear diffusive evolution equations posed on bounded space domains, governed by fractional Laplace-type operators, and involving porous medium type nonlinearities. We establish existence and uniqueness results in a suitable class of solutions using the theory of maximal monotone operators on dual spaces. Then we describe the long-time asymptotics in terms of separate-variables s...
متن کاملAsymptotic Properties of Mild Solutions of Nonautonomous Evolution Equations with Applications to Retarded Differential Equations
We investigate asymptotic properties of mild solutions of the inhomoge-neous nonautonomous evolution equation d dt u(t) = (A+B(t))u(t)+f(t); t 2 R, where (A; D(A)) is a Hille-Yosida operator on a Banach space X, B(t), t 2 R, is a family of operators in L(D(A); X) satisfying certain boundedness and measurability conditions , and f 2 L 1 loc (R; X). The mild solutions of the corresponding homogen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2013
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.03.034